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1. Introduction 

The military is going through a change in strategic emphasis from asymmetric 
warfare threats involving intact terrorist groups and state-sponsored disruptive 
insurgent networks to focusing on nation states. Existential future threats are 
perceived to come from near-peer nations (Russia and China) and unstable nation 
states such as North Korea and Iran (Washington Times 2019). The unsettling 
feature of these threats is that some of the actors are supported by military forces 
as large as or larger than ours and their technology is continuing to improve to the 
point that absolute technological advantage cannot be assumed. In particular, 
China’s progress in robotics and artificial intelligence (AI) will impact both their 
commercial and military strength. AI will not only improve response time and 
precision of weapons but autonomous systems will act as force multipliers (Barnes 
and Chen 2012; Chen and Barnes 2014; Defense Science Board 2016). Modern 
forces will consist of manned, unmanned, and autonomous elements controlled 
directly or indirectly by human supervisors (Goodrich and Schultz 2007; Evans et 
al. 2017; Scharre 2018). For example, developing systems such as the Next 
Generation Combat Vehicle robotic version (NGCV [RV]) combines all three 
elements and types of control to maximize synergy between human and 
autonomous elements. However, as Raja Parasuraman predicted, improvements in 
autonomy and AI have not reduced the roles of the human; rather, they have 
changed them—sometimes dramatically (Parasuraman and Manzey 2010). 

Over the last few decades the US Army Combat Capabilities Development 
Command Army Research Laboratory (CCDC ARL) and its collaborators have 
conducted research in AI/machine learning (ML), robotics systems, autonomous 
systems, natural language processing (NLP), human–robot interactions (HRI), and 
human–agent teaming (HAT) (Evans et al. 2018; Holder 2018; Barnes et al. 2019b). 
The objective of this report is to summarize the essential HRI research funded by 
the Human Research and Engineering Directorate (HRED) focusing on the 
changing role and supporting technology for the Soldier/operator. The summary 
will discuss lessons learned as well as design principles in an encapsulated form 
rather than conduct an extensive literature review. The format is topical, beginning 
with teleoperations of robots, then discussing topics such as multimodal control and 
display, adaptive systems, RoboLeader (a planning agent), models of trust and 
transparency, design implications of the human–agent interface, and a discussion 
of current and future efforts related to bidirectional communications between 
humans and agents. The arrangement of the discussion is meant to reflect how the 
scientific zeitgeist changed over the course of the HRI research program, from 
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human control of robots to higher-level interactions with intelligent agents (Barnes 
and Evans 2010; Chen and Barnes 2014; Chen et al. 2018).  

2. HRI and Teleoperations 

Whereas teleoperations was an initial focus of HRI, it is still an important feature 
of robotic control because of the many fine grained uses of robots; for example, for 
finding and disarming improvised explosive devices (IED) and mines 
(Bodenhammer 2007), search and rescue (Khasawneh et al. 2019), and space-
related applications (Guo et al. 2019), just to name a few. Indeed, Chen et al. (2007) 
concluded that, even for both autonomous and semi-autonomous systems, 
teleoperations will remain an important option as a backup during dangerous or 
unusual situations. They summarized the perceptual and cognitive issues for 
designing a teleoperated system (Table 1). For remote viewing, the world looks 
remarkably different; a limited field of view (FOV) causes the world to look 
constricted, making driving the robotic vehicle difficult especially because the 
sensor orientation and the position of the robot may be difficult to judge. The frame 
rate needs to be less than 10 Hz for optimal viewing (for a comprehensive review 
on frame rate, see Chen and Thropp 2007), and time lags over 170 ms degrade 
operator performance when driving the remote vehicle. The most effective frame 
of reference for the camera viewpoint is task dependent. The egocentric and 
exocentric viewpoints each have advantages and disadvantages, and integration of 
information from both may be difficult for the operator. Remote viewing may also 
cause motion sickness because of the conflicting vestibular and motion cues. For 
tasks such as disarming an IED, poor depth perception obtained from 2-D cameras 
can be ameliorated with stereovision (Bodenhammer 2007). 
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Table 1 Cognitive and perceptual issues for teleoperations (adapted from Chen et al. 2007) 

 Issues Suggestions 

1 Limited field of view (FOV): erroneous 
speed and distance judgments, peripheral 
vision loss, degraded remote driving 

Increase FOV or possibly use 
multiple FOVs for different tasks 
(multiple FOVs may be confusing – 
require training) 

2 Robot sensor orientation and attitude of 
robot misperceived by operator 

Track-up view for navigation; change 
to North-up view for map 
coordination tasks (e.g., recon tasks). 
Reference robot attitude in terms of 
gravity 

3 Poor depth perception affecting size and 
distance for driving, manipulation, and 
navigation 

Stereoscopic displays; caution: can 
cause motion sickness depending on 
the type of displays and individual 
susceptibility 

4 Camera viewpoint and frame of 
reference: egocentric – do not see 
peripheral information; exocentric – loss 
of immediacy 

Dual views and/or add peripheral 
cues for egocentric; consider 
specialized camera views 

5 Slow frame degrades motion and spatial 
perception 

10 Hz minimum; also augmented 
reality 

6 Time delays from robot sensor to display 
more detrimental than delay from 
operator to robot 

Minimum depends on task: 170 ms 
for driving; predictive displays help 
for longer lags 

7 Attention switching for multiple sensors Auditory and visual momentum 
cueing among views 

8 Possible motion interference and motion 
sickness 

Engineer interface to minimize 
vibratory and motion effects 

 

ARL experiments at Fort Leonard Wood initially found stereovision difficult to use 
because an uneven depth of field (DOF) made the images fuzzy depending on the 
distance that the camera was from the target object. However, when DOF was 
sharpened over its range, mine detection and robot arm manipulation resulted in 
improved stereovision performance compared to 2-D viewing (Bodenhammer 
2007). Edmondson et al. (2012) investigated pairing a haptic controller with the 
improved stereovision camera, showing better performance with the combined 
system versus baseline conditions (Fig. 1). 
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Fig. 1 Haptic controller and robot with a stereoscopic camera (Edmondson et al. 2012) 

Pettitt et al. (2013) reported HRI design issues while comparing different types of 
autonomy with teleoperations during field exercises at Fort Benning. Semi-
autonomy reduced workload but in some conditions the perceptual cues from the 
operator’s camera-based teleoperation and the automated obstacle avoidance 
capability conflicted. According to Soldier feedback, the hardest thing to learn was 
how to maneuver the robot around objects when the obstacle avoidance system was 
being used. Although the obstacle avoidance system appeared to adversely impact 
course completion times, it did reduce the number of driving errors over those with 
teleoperation and it also reduced the percentage of times the operators had to stop 
driving in order to perform the secondary task compared to teleoperations. This 
capability needs to be refined so Soldiers can choose how to efficiently maneuver 
around the detected objects. This confusion between the manual and automated 
handoff emphasized that task allocation between operators and automation needs 
to be designed carefully to ensure that operators internalize their portion of the task 
so that it is aligned with the automated portion.  

Telepresence is the use of robotic sensors to create the sensation of the operator 
being in the environment monitored by a remote robot. Elliott et al. (2012) in 
collaboration with the TNO (Toegepast Natuurwetenschappelijk Onderzoek) 
laboratory in the Netherlands, found that the TNO telepresence robot (stereo-vision 
and stereo-audio) improved performance in a field exercise at Fort Benning, 
Georgia. Although dismounted Soldier participants felt the robot and the interface 
equipment were too cumbersome in its current configuration, feedback for the 
overall concept was very positive. They particularly appreciated the immersive 
effect of head-controlled camera views and remote audio. 
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HRED-supported research at the University of Central Florida (UCF) compared 
manual control of robots with different types of automation in an urban simulation 
environment. They found that manual control was suboptimal for detecting possible 
IEDs from robotic vehicles traveling at moderate speeds. However, they found that 
humans were superior at identifying types of roadside objects and making tactical 
decisions, suggesting that a combination of manual control and various degrees of 
automation was better than either type of control alone (Barnes et al. 2014). 

An important consideration for designing future systems such as the NGCV (RV) 
is the targeting function of the remote vehicle. Chen (2010) reported the results of 
four simulation experiments in which an operator either controlled or supervised a 
robotic vehicle from a manned platform, including conditions when the operator 
conducted gunner functions concurrently. Teleoperations of the robot degraded 
gunner functions but making the robotic vehicle autonomous degraded using the 
robot for surveillance (i.e., operator out of the loop). The results indicate that robot 
control and gunner functions should be performed by separate operators. Aided 
Target Recognition (AiTR) alerted the vehicle operator regarding potential targets 
and thus reduced the gunner’s workload; however, the benefits of using the aid 
depended on individual differences. For participants who reported high attentional 
control, false-alarm prone aids interfered with performance more so than for 
conditions utilizing miss-prone AiTRs. Higher attentional control presumably 
allowed operators to attend to the target display while monitoring the aid but a high 
rate of false alarms caused them to ignore the AiTR alarms (disuse), even in 
conditions when it was accurate (Parasuraman and Riley 1997). The opposite effect 
(misuse) was found for participants who reported poorer attentional control; they 
tended to over-rely on miss-prone aids at the expense of attending to the target 
display. Individual differences also affected the utility of target alarms, leading 
Chen to conclude that remote operator interfaces and training should be designed 
to be flexible so that they can be adapted for individual differences.  

The use of semi-autonomous controls such as way-point navigation can reduce 
workload while giving the operator greater control of the robotic vehicle’s other 
functions. However, hybrid options with manual, semi-autonomous, and 
autonomous functionality promise greater flexibility in future combat 
environments, as long as the different modes are designed to be integrated in such 
a way to support the operator’s mental model of the tasking environment. In 
particular (Pettit et al. 2013, Wright et al. 2018), Soldier supervision of autonomous 
and semi-autonomous systems must not be at the expense of their overall situation 
awareness (SA) (Chen and Barnes 2014). Interfaces for autonomous systems must 
consider potential overload when operators are controlling/supervising or 
monitoring autonomous systems in addition to their other combat tasks. The 
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following section discusses HRED multimodal research, whose purpose is to 
distribute information over multiple sensory channels and develop naturalistic 
control devices to enable operators to focus on their mission objectives while 
maintaining SA. 

3. Multimodal Intuitive Displays for Autonomous Systems 

3.1 Introduction 

There is no doubt that autonomous capabilities will be instantiated throughout 
military systems on land, sea, and air. Significant achievements in advanced 
autonomous capabilities are increasing in rate and scope (Martin et al. 2019), 
generating many issues for policy regarding use (Williams and Scharre 2015). 
Autonomous robotic systems augmented by AI are being designed to enhance 
sensor-based capabilities and information distribution. Emerging concepts in net-
centric and asymmetrical warfare will rely on this capability to “push” information 
autonomously, in addition to being easily “pulled” from existing sources (Lacdan 
2019).  

Given this heightened capability for information push and increasing need to 
interact with multiple autonomous or semi-autonomous systems, along with the 
need for rapid action in dynamic context, reducing information overload has 
become a design driver for developing systems. Suboptimal decision making, 
slower response times, and generally poorer performance can result if operators are 
too focused on processing information rather than performing tasks (Wickens 
2008a). Superior quality of information is not sufficient, nor is rapid delivery, rather 
it is essential that information be packaged in a format that can be quickly 
comprehended (Mitchell et al. 2004). The design challenge is to create interfaces 
that enable rapid understanding and more naturalistic human-systems interactions 
(Elliott and Redden 2013).  

In many tactical situations, whether stationary or on the move, it is the visual 
channel that is overwhelmed with incoming information. For these situations, 
Wickens (2008b) established a key principle based on numerous studies stating that 
an overall reduction in cognitive loading can be obtained if information is 
distributed strategically over multiple sensory channels. The situation of the aircraft 
pilot was studied extensively by Wickens, who used speech/audio alerts to enhance 
comprehension (Wickens 2002). In turn, ARL researchers worked on audio and 
speech issues as they relate to Army combat scenarios. They have also collaborated 
with leading investigators at TNO Netherlands and the Army Aeromedical 
Research Laboratory (Fort Rucker, Alabama) to develop tactile options for Army 
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Warfighters in high workload situations (Elliott et al. 2007, 2010; Duistermaat et 
al. 2007). From the start, the focus has been on usability as well as multisensory 
application. For a display to be intuitive it must be easy to learn, utilize preexisting 
knowledge when possible, and be easy to use in an operational context.  

The development of multisensory intuitive displays must first identify design 
factors such as operational context, existing workload, and information 
requirements, along with principles of multisensory display design. Ideally, display 
design would begin with cognitive task analyses (Crandall et al. 2006), to identify 
task demands, task goals, and information requirements, as well as to drive 
systematic application of multisensory principles. Distribution of information 
across sensory channels is more effective with tasks having a common goal (e.g., 
driving and listening to navigation information) than across competing goals (e.g., 
visual search of complex terrain while listening to radio transmission of unrelated 
information). Component tasks should be trained to automaticity when possible 
(e.g., basic driving/flying tasks should be accomplished with ease before adding 
more channels of communication). The next section will discuss findings related to 
each sensory channel (visual, audio, speech, tactile) and some effective 
combinations.  

3.2 Visual Displays 

The ubiquitous use of visual displays for maps, graphics, and camera-based 
information—whether in stationary settings such as command centers or during 
mobile operations—attests to the importance of the visual channel (Fig. 2). For 
command centers and vehicle cockpits, map-based displays are essential yet 
complex, often with layers of information filters leading to the possible overuse of 
visual channels unless the displays are augmented by other modalities. Incoming 
information can be distributed through speech and tactile means; in addition, alarms 
and alerts are vital for attention management. For the dismounted Soldier on the 
move, additional issues arise that further encourage the use of alternative 
information displays. One is the “heads-down” nature of a handheld visual display, 
which will distract the user from immediate surroundings. Other issues pertain to 
successful night operations, where use of visual displays can expose the user’s 
location to the enemy. These considerations suggest careful consideration of 
alternate means of information display, where possible. 
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Fig. 2 Blue force tracking display within combat vehicle 

Advantages of visual displays:  

• Best for complex, map-based information; graphics; camera-based video.  

Disadvantages of visual displays:   

• Requires line of sight  

• Often leads to information overload  

• Often leads to attention tunneling 

• Not covert during night-operations   

• Higher workload to interpret direction cues 

• Handheld options interfere with weapon use 

3.3 Audio-based and Speech Displays 

Audio Alerts 

ARL research supports the use of audio cues for attention management, while 
attending to a visual display. ARL sponsored a meta-analysis of 24 studies 
comparing visual with visual-audio displays, that showed visual-audio 
multisensory displays were more effective than all-visual displays (Burke et al. 
2006). The accumulation of findings provides strong support for reducing visual 
workload and attention management through use of audio alerts. Haas and van Erp 
(2014) detail many specific recommendations for the design of multimodal systems 
and they summarize the types of displays that favor the use of tactile or auditory 
cues. 
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Investigations of audio alerts have addressed perceptions of urgency (Haas and 
Casali 1995), for improved effectiveness of audio alerts. These principles 
generalized to applied endeavors, such as improving the design of the multiple 
sensor mine detection system (MDS) (Vause et al. 1999; Ferguson et al. 2000). 
Noting that MDS operators commonly suffered from undiagnosed hearing loss, 
they underscore the need for consideration of user characteristics in the design of 
signals. To avoid spectral regions of lower sensitivity, they advise that audio cues 
contain frequency components in multiple frequency ranges; at least one below 
1 kHz and at least three between 1 kHz and 4 kHz, where hearing is most sensitive. 
The resulting signal design for the Hand-held Stand-off Mine Detection System 
(HSTAMIDS), shown in Fig. 3, incorporated a 500 Hz complex signal containing 
frequency content spanning several octaves. 

 

Fig. 3 HSTAMIDS/3-D audio for communications 

The operator should be able to learn the features of the auditory icons that 
discriminate between the types and sizes of mines easily. For example, they suggest 
that the pulse rate can be increased or decreased as a function of the size of the mine 
detected. Variation of other features such as tonal combinations, rhythmic patterns, 
and spectral effects (e.g., sharpness, brightness) can also distinguish between the 
types of mines detected. Use of robotic systems for mine detection would benefit 
directly from the HSTAMIDS research; 3-D audio conveys information about the 
spatial location of the sound source or uses binaural difference cues to control the 
perceived spatial locations of sounds within the acoustic environment. For example, 
by assigning each channel of one’s radio communications to a spatially separate 
location, speech recognition benefits from the perceptual cues that allow the listener 
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to selectively attend to only the desired channel, as demonstrated by Haas and her 
colleagues (Haas et al. 1997). 

They demonstrated that 3-D audio, in this case, the spatial separation of radio 
streams, led to improved responses to radio communications, when three channels 
were present. In another study, spatially separating the source of radio 
communications input in a command and control vehicle improved speech 
intelligibility by as much as 15% and was the preferred option (Vause et al. 2000). 
Further, because sound location is perceived automatically, colocalizing auditory 
signals, such as alerts and warnings with the signal’s source, or the item requiring 
attention, reduces the time required to respond. In a comparison of helicopter 
cockpit warning systems, the response time to visual signals augmented with 3-D 
auditory icons was significantly less than that of visual signals alone (Haas 1998).  

ARL publications have summarized best practices for auditory signal design. 
Researchers from the Air Force Research Laboratory (AFRL) and ARL jointly 
published a guide to auditory displays (Letowski et al. 2001). Haas and Edworthy 
(2006) jointly authored a comprehensive book chapter on auditory signal design. A 
book on the design of helmet-mounted displays was the result of collaboration 
between ARL and the US Army Aeromedical Research Laboratory (Letowski et al. 
2009). The book documents many of the basic psychophysical principles guiding 
audio and visual displays. The current version of MIL-STD-1472 section 5.3.1 
(MIL-STD-1472G 2012, p. 118–130) summarizes many best practices with respect 
to the design of auditory warnings and signals and is the result of research 
conducted by ARL and other Department of Defense (DOD) organizations.  

Speech 

Speech is integral to Army operations. Radio-based communications are both sent 
and received, such that speech can be investigated as a display (receipt of 
information) and as a controller (sending of information commands). In this way, 
speech as a communication channel can be considered as another baseline, along 
with visual displays. The advantages of speech when added to visual display 
functions has been widely investigated in aircraft cockpit contexts (Wickens 2008a) 
to communicate critical information, improve attention management through 
alarms, and provide information status updates. These advantages can easily be 
generalized to ground vehicle and robotic contexts.  

Speech has also been demonstrated to reduce workload when used in robot 
controller contexts, and is envisioned as integral to seamless interaction with 
autonomous assets. In an ARL-sponsored study performed at a robot maneuver 
course at Fort Benning, speech-based robot control was evaluated within the 
context of two visual display conditions (Pettitt et al. 2014). The overall 
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effectiveness of the speech–visual combinations was significantly affected by the 
nature and referenced labeling of the visual information. ARL sponsored a series 
of investigations of speech-based commands, conducted by the University of 
Central Florida (Barber et al. 2014; Teo et al. 2014; Harris and Barber 2014). 
Studies were performed at the university and also with Soldiers at Fort Benning, 
Georgia. These commands were tailored to human–robot situations, in order to 
identify the most effective COTS speech recognition devices and develop an 
intuitive set of speech commands to convey commands such as direction, distance, 
and surveillance-reconnaissance tactics, from an operator to a robotic asset. These 
issues become more important as robotic assets become more autonomous and 
associated with more complex commands.  

Advantages of speech and audio: 

• Traditional Soldier–Soldier communication. Generalizes to Soldier 
interactions  

• Lowers workload/increases comprehension in stationary settings 

• Lowers workload when used to give commands to robotic assets 

• 3-D audio cues can clarify multiple communication channels  

• 3-D can provide direction cues 

• Effective during poor visibility  

Disadvantages of speech and audio:  

• Not covert when silence required 

• Not as effective in noisy context  

• Front-back cone of confusion (3-D audio) 

Speech has been found to be more effective when combined with another 
communication channel. In a study comparing effectiveness of speech and tactile 
cues for communicating direction and distance, researchers established that the 
combination of tactile direction cues and speech for distance information resulted 
in a faster, more accurate response than when both direction and distance were 
communicated with a single channel (Hartnett et al. 2018). Soldiers stood stationary 
and informed of the correct eight cardinal directions (i.e., north, northwest, west, 
southwest, south, southeast, east, northeast) for their location. They stood within a 
ring that was marked with reference points not pertaining to direction. They were 
given direction and distance cues using tactile and/or speech cues (see Fig. 4).  
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Fig. 4 Speech and tactile cueing for direction and distance information 

3.4 Tactile Displays 

There is increasing consideration and use of tactile displays for attention 
management, direction and spatial orientation information, and short 
communications. A particular advantage of tactile displays is the potential for pre-
attentive processing, particularly for direction and spatial orientation cues (Elliott 
et al. 2014). Given the promising results regarding the use of tactile cueing for 
dismount Soldier navigation. ARL supported a multiyear program of research in 
tactile displays for direction cueing. Cognitive task analyses had identified Soldier 
navigation during movement to contact as one that was particularly high in visual 
workload (Mitchell et al. 2004).  

ARL-sponsored meta-analyses of existing experiment-based comparisons provided 
foundational support for focused research on tactile displays. Meta-analyses of over 
40 empirical studies showed significant improvement to performance outcomes 
when tactile cues were added to visual displays (Elliott et al. 2009). Field-based 
investigations first identified tactile cueing systems that were most effective during 
strenuous Soldier movement (Redden et al. 2006) and that could effectively convey 
short communications as well as direction information (Pettitt et al. 2006). Tactile 
cues were as easily comprehended as the arm and hand signals, while also having 
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the advantage of working when out of line of sight and during poor visibility. 
Tactile cues have the advantage of relative stealth, and can remain effective when 
there is a need for operational silence, light security, or in conditions of poor 
visibility.  

While many ARL studies have shown advantage of tactile cueing for direction and 
alerts (Krausman et al. 2007; Krausman and White 2008; White et al. 2012; Elliott 
et al. 2015, 2018, 2019a), the most dramatic demonstration of effectiveness was 
accomplished when the tactile belt was added to a chest-mounted visual display 
similar to the existing Nett Warrior concept, evaluated during night operations 
involving waypoint navigation and receipt of incoming messages. They used a 
standard chest-mounted visual display, consistent with Nett Warrior concepts, 
integrated with the tactile belt system. Results showed that missions performed with 
the tactile cueing were associated with reduced mission times, increased navigation 
accuracy, and lower reported experience of cognitive workload, effort, and 
frustration. Soldiers reported being more situationally aware of their surroundings 
and having better control of their weapon. In addition, when in the “tactile belt on” 
condition, Soldiers very rarely checked the visual display, averaging fewer than 2 
times, compared to an average of over 17 times when the tactile guidance was not 
available. This was described by the Soldiers as the most critical operational 
advantage of the tactile guidance. Evaluation of tactile message comprehension was 
over 95%, when cues were presented only once during the waypoint navigation 
trials. Figure 4 shows a Soldier-participant in the night operations study, using the 
chest-mounted visual display. The torso tactile belt is worn under the uniform, over 
the T-shirt. It also shows the disadvantage of the visual display system when the 
participant is “heads-down”. In contrast, the tactile belt system was described by 
the Soldier participants as “hands-free, eyes-free, and mind-free”.  

Tactile cueing has also proven effective for robot control. When added to robot 
control devices to provide direction cues to the operator using camera-based 
teleoperation, the operator could use a smaller robot control device as effectively 
as one with a larger video camera screen (Redden et al. 2009), because the tactile 
direction cueing minimized the need for constant reference to a map display.  

More recently, tactile options have proven to be a viable means of human–robot 
bidirectional communications (Barber et al. 2013; Barber et al. 2015). Given that 
robotic assets are often out of line of sight, tactile communications offered the 
potential of covert communications from the robot to the controller, through short 
messages representing alerts or status updates. A series of experiments investigated 
the capacity of operators to learn and remember tactile cues. ARL sponsored 
laboratory-based investigations of tactile-based communications, led by Daniel 
Barber at UCF (Barber et al. 2014). Investigations centered on the development of 
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tactile cue learning, based on a lexicon of tactile cues. Differences in learning and 
performance were also identified based on tactile cue characteristics; however, 
differences were ameliorated with refinements to the training process.  

Studies of tactile messaging were also accomplished using Soldier-based 
evaluations conducted at Fort Benning, with messaging similar to traditional Army 
hand and arm signals and basic alerts that would be sent from robot to user. It was 
hypothesized that certain tactile cue characteristics (i.e., tempo, frequency 
complexity) would affect the perception of the tactile cue, in terms of tactile 
salience (i.e., the ease with which a tactile cue is perceived), which would in turn 
affect the ease of learning and recall. Soldier-participants were able to learn 12 
different tactile cue commands in less than 30 min. They were able to accurately 
recall cue meanings several hours after the first training session (Elliott et al. 2019a; 
Elliott et al. 2019b). Tactile cue characteristics were significantly associated with 
levels of tactile salience, ease of learning, and accuracy of recall, leading to several 
guidelines for the design of multi-factor tactile cues for enhanced multimodal 
bidirectional communication among robot operators and assets.  

Advantages of tactile displays:  

• Fastest response to direction cues 

• Intuitive portrayal of spatial orientation (e.g., helicopter pilot)   

• No need for line of sight   

• Effective during poor visibility (e.g., smoke, fog) 

• Effective during night operations (e.g., maintains light security) 

• Covert (can adjust cues for silent low-frequency communications)   

Disadvantages of tactile displays: 

• Limited vocabulary/syntax options    

3.5 Gesture-based Controls 

Gestures, in the form of hand and arm signals, have always been used for military 
communications. Advantages are practical, allowing for rapid and covert 
coordination of actions in dynamic context. For the field of gestural controls, the 
technological progress is rapid, distributed among many different approaches, and 
yields a huge number of relevant publications. An ARL-sponsored review of the 
literature relevant to gestural control of robotic assets (Elliott et al. 2016) 
summarized studies regarding camera-based systems, instrumented gloves, and 
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handheld approaches to gesture-based controls. For the dismount Soldier, the 
instrumented glove approach was identified as most suitable. Advantages and 
disadvantages of each approach will differ based on operational task demands and 
context. 

ARL researchers are investigating the use of gestures when integrated with complex 
visual displays (see Fig. 5). They first developed a light convolutional neural 
network as a gesture classification model to detect hand gestures in real-time, using 
a data set of 6,700 examples, based on eight one-handed gestures and six two-
handed gestures (Hansberger 2019). The network was able to find archetypal 
features of each gesture and classify new data samples by scanning a real-time 
stream of joint rotations. They also investigated issues related to “gorilla arm 
syndrome”, where fatigue can arise from prolonged hand and arm gesture activity. 
Gestures were systematically modified to use a supporting device that allowed 
natural resting positions, and thus reduce fatigue. (Hansberger et al. 2018). These 
findings inform an ongoing effort to develop an interface using input from voice, 
hand gestures, and eye gaze to interact with information in a virtual environment 
(Hansberger et al. 2019). As an example of integrated performance, the operator 
could use eye gaze for selection, with further instruction from speech or gesture, 
depending on operator choice. Future efforts in this area include a series of 
experiments that will examine the performance, engagement, and user experience 
levels that the multimodal system provides within the virtual environment. 

 

Fig. 5 Instrumented glove concept for visual displays (left) and dismount robot control 
(right)  

Field-based evaluations of prototype gesture-based robotic control systems have 
demonstrated advantages for wearable gesture control devices. An instrumented 
glove prototype was found effective for robot maneuvering (e.g., moving through 
robot obstacle course) and fine control of the robotic arm (Hartnett et al. 2018, see 
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Fig. 6). The assessment included demonstration of pointing gesture for direction 
information. The pointing gesture was demonstrated successfully for robot 
movement  

 

Fig. 6 Chest-mounted visual display, with torso tactile belt (right) worn under uniform 

An instrumented glove was used for Soldier-to-Soldier communication of direction 
information, when integrated with a tactile belt (Hartnett et al. 2018). Soldiers in 
different locations could easily refer to a specific location using a pointing gesture, 
with the direction reflected accurately on the tactile belt. For example, if locations 
A, B, and C were points on an equilateral triangle, Soldier 1 at location A used the 
instrumented glove to point to threat location C. Soldier 2 at location B received 
the direction information through the tactile belt, which directly “pointed” to threat 
location C, thus minimizing any confusion that could arise from speech 
communication.  

A smartwatch form factor for speech and gesture-based controls was demonstrated 
successfully for control of robotic mules (see Fig. 7). Results showed that while 
both command methods were fairly accurate and the speech commands were 
particularly effective when not immersed in a high-noise environment, using a more 
typical headset with a directional, noise-canceling microphone potentially could 
yield even better results. Gesture recognition is another potential area for 
improvement. The gesture recognizer used the native inertial measurement unit on 
the smart watch, which was sensitive arm motion on some trails, and generally had 
too fine a window of recognition. Even so, with few exceptions, Soldiers 
successfully maneuvered the robot using all the gesture and speech commands. 
Based on Soldier feedback and observations, the smart interaction device (SID) was 
easy to learn and use for both gesture and speech commands. Soldiers gave positive 
feedback on the operational relevance of both speech and gesture as a means of 
intuitive control of robotic assets. 
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Fig. 7 SID for advanced human–robot interaction and Lockheed Martin’s SMSS robotic 
mule 

Advantages of gesture communications:   

• Naturalistic means for direction cues (pointing) 

• No need for line of sight (instrumented gloves)  

• Can be consistent with naturalistic movements  

• Already used for Soldier–Soldier communications, easily generalized to 
human–robot interaction 

• Covert (silent)  

• Effective under high noise  

Disadvantages of gesture communications: 

• Limited vocabulary/syntax options  

• Gesture recognition options differ in reliability   

The combination of gesture and speech holds high promise for multimodal systems 
for robot control. Speech-based controls have been developed with the goal of 
natural language interaction. At this time, purely speech-based controls face a core 
challenge regarding communication of spatial relationships and explicit directions 
(e.g., “go to the east side of the third building behind the church”), and pointing 
gestures are expected to help clarify speech-based localization information. 

While benefits have been demonstrated, challenges remain with regard to effective 
integration of speech and gesture, particularly in multi-object environments in a  
3-D world. These more complex scenarios represent an uncertain and unstructured 
problem space. Similar issues are faced as researchers strive to develop an interface 
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that integrates head-mounted visual display, speech, and gesture controls for the 
commander situated in a moving command vehicle (Neely et al. 2004). Gestures 
are most naturally effective in situations of physical co-presence, where the robot 
and the operator can establish a joint visual understanding of the environment, with 
physical and directional referents. This is particularly true if robot recognition of 
gestures is dependent on a camera-based system. 

3.6 Summary Discussion 

There is now overwhelming evidence of the potential benefits of multisensory 
displays. While laboratory-based studies search for generalizable principles, they 
are complemented by many simulation and field-based studies that demonstrate 
advantages across numerous operational contexts. A review of these studies can 
reveal significant implications given a particular context, and implications will 
differ as task demands and context differ. The advantages of particular 
communications will be different for a dismount Soldier on the move during night 
operations than for crewmembers within a command and control center or vehicle 
cockpit. However, the approach to multimodal design will be similar, beginning 
with in-depth cognitive analysis of task demands and information requirements.  

Certain principles will generalize across context. As an example, torso-based tactile 
cues are consistently best for direction cues, resulting in the fastest response time. 
However, tactile cues are not effective to communicate distance, as that would 
require the operator to “count” the number of tactile pulses, for distance 
information. Thus, the combination of tactile cueing for direction along with 
speech-based cueing of distance information (e.g., “200 meters”), should result in 
a faster, more accurate response across operational context. In the same way, 
speech-based controls should result in a faster, more accurate robot navigation 
compared to joystick control (e.g., “move forward and turn left at the second 
building on the right, go to the back of the building and scan for threat”). The 
addition of pointing gestures can further clarify speech commands, particularly 
when the robotic asset is situated at a different angle from the operator (e.g., “go 
that way 500 meters”). Longstanding principles of aircraft cockpit pilot 
performance should generalize directly to vehicle commander operations (e.g., use 
of speech to augment visual displays). It is this type of complementary interaction 
that is sought to bring laboratory-based findings to bear on multimodal system 
design, and thus enhance performance and reduce cognitive workload within Army 
operations.  

Certain principles of multisensory design will also cluster within an operational 
context. While the optimal multisensory display configuration will depend on 
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factors specific to operational mission context and individual operator preferences, 
general predictions can be made. For dismounted troops, multisensory options can 
alleviate disadvantages such as “heads-down” attentional tunneling with wearable 
options that are hands- and eyes-free. For mounted vehicle commanders, audio and 
tactile displays can manage attentional focus and offer intuitive direction cueing. 
For mounted robot controllers, tactile displays offer haptic messaging of critical 
alerts from robotic assets, along with direction cueing and haptic feedback of terrain 
(e.g., haptic steering).  

While general principles can ameliorate workload in visually overloaded 
operations, individual operator preferences should always be considered through 
design of conformable and adaptive displays. Soldiers and research participants 
consistently provide feedback urging capabilities that can be adjusted to user 
preferences. They would like to be able to turn any particular display off, “lower 
the volume” of any particular communication source, and choose the controller 
option best suited to operations. This capacity to choose options also provides the 
opportunity for redundancy that itself offers advantages in terms of effectiveness 
(i.e., redundant messaging conveys urgency and accuracy) and operational risk 
reductions, if one channel were to fail. The following sections will discuss the 
implications of increased autonomy and humans teaming with intelligent software 
agents. Most of the discussion will involve the operator during mounted missions. 
However, future dismounted Soldiers will also partner with agents conducting 
routine combat patrols (Selkowitz et al. 2016; Chen et al. 2018). In both situations, 
human–agent interactions will not only partially unburden Soldiers but also require 
additional attentional resources (Parasuraman and Manzey 2010; Chen and Barnes 
2014). Multi-sensory interfaces will help Soldiers maintain their own SA by 
partitioning incoming communications related to the immediate situation separately 
from communications emanating from the agent. 

4. Human–Agent Teaming 

Over the course of the HRI research, the human role evolved from control, to 
supervision, to collaboration (Parasuraman et al. 2000; Kelley and McGhee 2013; 
Chen et al. 2018). Systems that heretofore were manually controlled with 
automated components are evolving towards autonomy in the sense that these 
systems are able to be aware of their environment, react to change, and alter their 
COA when necessary to achieve their prescribed objectives (Russell and Norvig 
2009). An intelligent agent (IA) in this context is an algorithm that performs 
specified tasks autonomously under the auspice of its human operator (Chen and 
Barnes 2014). Teaming relationships between agents and humans potentially 
combine human meta-knowledge with the agent’s use of specialized algorithmic 
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solutions to rapidly solve complex problems (Draper et al. 2018). To be successful, 
HAT require a collaborative relationship between the agent and its human partner 
and is predicated on mutual transparency and bidirectional communication (Chen 
et al. 2018). Partnership between human and agents presents problems as well as 
advantages: the two types of intelligence are not symmetrical (Kahneman 2011; 
Chen and Barnes 2014; Barnes et al. 2019a). The world model of agents is not only 
constrained by its software underpinning but also by its difficulty in adjusting to 
novel events and its limited ability to anticipate human information requirements 
in a dynamic environment (McNeese et al. 2017).  

Early research on HAT was conducted by ARL’s Robotic Collaborative 
Technology Alliance jointly by Penn State University and ARL scientists who 
developed an agent architecture to support human–agent teams. They combined a 
cognitive model, Recognition-Primed Decision-Making (RPD), with an agent 
architecture, Collaborative Agents for Simulating Teamwork (CAST), resulting in 
RPD-enabled CAST (RCAST). In a simulation experiment, the teaming 
relationship of RCAST and human participants (H-A) was compared to human–
human teams (H-H) conducting a command and control mission (Fan et al. 2011; 
Chen and Barnes 2014). H-A teams using RCAST performed better than H-H 
teams; however, as the tasking environment became more complex, the H-A 
conditions started to degrade, possibly indicating RCAST brittleness in a changing 
environment. 

In contrast, mixed initiative models allow for human–agent flexibility by enabling 
either the human or the agent to act depending on the situation. Adaptive and 
Adaptable systems are variants of mixed-initiative control in which humans always 
maintain decision authority, either directly or by specifying conditions under which 
the agent reacts automatically (Parasuraman et al. 2007; Chen and Barnes 2014; 
Barnes et al. 2015; Barnes et al. 2019b). Adaptive automation has a number of 
definitions; in this case; it is the triggering of an agent based on the state of the 
operator (increases in error rate, electroencephalography [EEG] fluctuations) or the 
state of the environment (multitask loading) (Chen and Barnes 2014). As part of 
HRED-supported research, Parasuraman et al. (2007) reported the results of three 
studies utilizing unmanned vehicles in which adaptive triggering of an aided target 
recognition agent based on individual operator error rate was superior to non-aided 
performance and to automation triggers averaged over multiple operators. The 
results showed improvements in workload, situation awareness, and change 
detection, suggesting that adaptive systems should be based on individual 
performance, again indicating the importance of individual differences for HRI. 
Adaptable systems (Parasuraman et al. 2007; Miller and Parasuraman 2017) are 
designed to give the operator more control by allowing the operator to decide when 



 

21 

an agent is instantiated. The disadvantage is that it contributes to workload by 
requiring operators to decide when to trigger a specific agent during high-workload 
mission segments. 

Initial forays into human–agent teaming (HAT) research exposed problems as well 
as provided solutions. While in many regards, HAT appeared to be an optimal 
solution—joining human ingenuity with computer processing capability to increase 
the human’s scope of effectiveness and the team’s overall efficiency—familiar 
human factor issues with automation surfaced—most notably human out-of-the-
loop (and automation bias (Parasuraman and Riley 1997; Wright et al. 2017). The 
following sections are discussions on how these and other issues were explored as 
part of ARL’s HRI program starting with our discussion of the RoboLeader agent 
research program. 

5. RoboLeader: Agent Control of Multiple Systems 

RoboLeader was one of the initial ARL HRI projects to investigate human–agent 
efficacy (Chen 2010). The RoboLeader agent was a surrogate supervisor that 
managed multiple robots (Chen et al. 2011). Diverse studies using the RoboLeader 
paradigm resulted in a better understanding of the agent’s contributions to human 
decision-making during manned-unmanned operations (Chen and Barnes 2012a, 
2012b; Wright et al. 2016, 2017, 2018). If events occurred requiring route changes 
or allocation of new tasks to the robots, the agent computed needed changes and 
issued new instructions, but human operators authorized their execution. The 
results of the studies indicated that agent error rate was not as important as type of 
error (false alarms vs. misses) but that RoboLeader aiding proved useful even for 
situations with imperfect agent reliability (Chen and Barnes 2102a, 2012b). The 
most ubiquitous finding of these and similar HRI studies was the importance of 
individual operator differences in determining effectiveness of HAT interactions 
(Chen and Barnes 2014; Chen et al. 2018).  

More recent RoboLeader studies examined how the amount of information the 
operator was given about the experimental environment (supervising convoy 
operations; Fig. 8) interacted with the transparency of the agent’s reasoning. The 
operator was better able to override the agent when it was incorrect if the reasoning 
behind the rerouting decision was explained. However, when the agent gave the 
operator additional information (staleness of agent’s report), it actually hurt 
performance compared to the reasoning alone condition, suggesting that extraneous 
and/or ambiguous information can be harmful (Lee 2012). In the second study, the 
operator was given more information about the study environment and performed 
the same tasks with the same levels of agent reasoning transparency as in the first 
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study. Access to the agent’s reasoning did not have the same impact on performance 
as in the first study; however, the addition of extraneous information again hurt 
operator performance. Together, these studies indicate that transparency of the 
agent’s reasoning is most helpful when the operator has limited knowledge of their 
task and/or environment, and ambiguous information is detrimental to operator 
performance (Wright et al. 2017).  

 
Fig. 8 The operator’s control unit is the user interface for convoy management and 360° 
tasking environment. OCU windows are (clockwise from the upper center) map and route 
overview, RL communications window, command communications window, MGV’s forward 
180° camera feed, MGV’s rearward 180° camera feed, UGV’s forward camera feed, and 
UAV’s camera feed (adapted from Wright et al. 2017). 

6. Trust and Transparency 

Lee and See’s (2004) seminal paper on trust identified two essential components of 
HRI: trust and transparency. We discuss some of the research that their paper 
motivated including models of trust and transparency and supporting research that 
were developed as part of HRED’s HRI program.  

6.1 Trust Models 

Calibrated trust is a requisite for collaboration among both human and human–
agent teams to ensure that functionality is optimally distributed among team 
members. Calibrated trust was initially framed in terms of reducing automation 
misuse and disuse (Parasuraman and Riley 1997; Lee and See 2004; Lee 2012). 
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The human operator’s misuse of automation was attributed to biases causing 
complacency such as ignoring information signaling automation failure 
(Parasuraman and Manzey 2010; Wright et al. 2016). Disuse is the opposite 
problem of not depending on automation when its use is appropriate. Human beliefs 
concerning the proper role of humans versus machine decision-making can result 
in automation disuse causing humans to ignore correct automated solutions (Beck 
et al. 2007). Dzindolet et al. (2003) found automation use sensitive to the lack of 
transparency; operator reliance waxed and waned depending more on their 
uncertainty concerning the reasons the automation was making errors than on the 
actual performance of the automated system. However, using a meta-analysis to 
investigate a large cross section of automation and robotic studies, UCF and ARL 
scientists found that the characteristics of the agent (especially its performance) was 
the main determiner of trust (Hancock et al. 2011). More recent analysis by 
Schaefer et al. (2015) found a significant (but moderate) effect on human-related 
factors as well as effects related to the characteristics of the agent. Hoff and Bashir 
(2015) developed a model of trust type based on an extensive review of the 
literature: disposition (depending on the person), situational (depending on the 
agent in a specific environment) and learned (depending on the person’s experience 
with agents) suggesting that trust is related to individual differences and past 
experience rather than being a unitary process related to the agent. Schaefer et al. 
(2017) argue that situational distrust is partially caused by the operator not 
understanding the intent of the agent in complex environments. They developed a 
general model of trust (Fig. 9) indicating its relationship to human, agent (robot), 
and environmental factors as well as the human’s past experience with the agent 
(Schaefer et al. 2019).  

 

Fig. 9 Model of human–agent trust (Schaefer et al. 2019) 
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6.2 Situation awareness-based Agent Transparency (SAT) Model  

Calibrated trust between humans as well as between humans and agents requires 
transparency (Dzindolet et al. 2003; Lee 2012; Chen and Barnes 2014; Lyons and 
Havig 2014; Schaefer et al. 2019). To address this issue, Chen et al. (2014) 
developed the Situation awareness-based Agent Transparency (SAT) model  
(Fig. 10) to delineate requirements for agent transparency. The SAT model was 
inspired not only by Endsley’s (1995) SA model, but also the Beliefs, Desires and 
Intent model (Chen et al. 2018) and Lee’s three P’s: Purpose, Process and 
Performance (Lee and See 2004). By incorporating aspects of each of these models 
into a cohesive concept, researchers could now operationalize transparency to 
facilitate and organize research, as well as inform interface design and assessment. 
Similar to Endsley’s (1995) model, SA subsumes 3 levels: Level 1–intent, plan, and 
action; Level 2–reasoning; Level 3–projected outcomes and uncertainty. However, 
in this case, SA refers to the agent’s assessment of its SA in relation to its proposed 
COA (Chen et al. 2014). Studies encompassing multiple scenarios have shown that 
SAT information is incremental—each level adds useful information to the operator 
decision-making. In contrast, the utility of uncertainty information is mission 
specific. For large-scale planning, uncertainty information is generally useful 
because it alerts operators to potential limitations of the agent’s plan. For squad 
levels missions, uncertainty information is not as useful because operators are time 
constrained and they require immediate “status at a glance” directions (Chen et al. 
2018; Mercado et al. 2106; Stowers et al. 2016; Selkowitz et al. 2016). 

 

Fig. 10 SAT model (adapted from Chen et al. 2014) 
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7. Mutual Transparency 

The success of HAT will ultimately depend on communications between the two 
entities. To reflect the importance of human–agent communications, the SAT 
model was recently expanded to encompass bidirectional transparency. Figure 11 
illustrates mutual transparency of the human having SA of the agent and the 
bidirectional transparency of the agent’s SA of the human (Lyons 2013; Chen et al. 
2018). To support bidirectional understanding, HRED is collaborating with 
Institute for Creative Technologies (ICT) at the University of Southern California 
to delineate research necessary for human–agent communications (Wang et al. 
2016; Pynadath et al. 2018; Barnes et al. 2019a). Besides  mutual transparency, 
communications require a) media (e.g., graphics, voice, text, etc.); b) process (e.g., 
natural language processing [NLP]); c) AI underpinning of the agent such as 
machine learning (ML); and d) specialized instruments (eXplainable AI [XAI]) 
(Kelley and McGhee 2013; Barnes et al. 2019b). The agent must understand the 
human’s requirements and vice versa, which for processes such as ML may require 
another level of translation to explain to the human the reasoning underlying the 
agent’s solution. ML solutions such as reinforcement learning algorithms may be 
opaque due to the convergence on a solution based on induction rather than 
depending on deductive logic (Everett and Hutter 2018). ICT is developing XAI 
techniques to understand and parse ML solutions so they are transparent to its 
human team member (Chakraborty et al. 2017; Pynadath et al. 2018). 

 

Fig. 11 Mutual transparency (Chen et al. 2018) 
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Mutual transparency is of particular import because human teams do not always 
interact through overt communications. Humans anticipate their partner’s actions 
and information requirements reducing the necessity for overt communications 
(Cooke 2015). Salas et al. (2015) point out that “teams that communicate 
effectively may alternate between explicit communication, or overt transmission 
and acknowledgment of messages, and implicit communication, whereby 
information is more passively conveyed.” One reason that humans anticipate rather 
than ask is because they have a theory of mind (TOM) that allows humans, 
especially those that have previous experience with their human team member, to 
have insight into the mental processes of their human partner (Astington and 
Edward 2010; Pedersen 2018; Mahey et al. 2014). ICT is conducting research on a 
recursive software model (PsychSim) to partially emulate a TOM for software 
agents as an initial step in enabling agents to develop shared mental models (SMM) 
with their human partner (Pynadath and Marsella 2005; Chen and Barnes 2014; 
Wang et al. 2016, 2018; Kwon 2018). Software SMM are in their early stages and 
fluid interactions between humans and agent still depend on overt communication 
techniques (Barnes et al. 2019b). However, HRI research on Controlled English 
shows promise by delimiting the size of the lexicons and focusing on specialized 
domains making human–agent communications practical for specific military 
missions such as civil affairs and military intelligence (Giammanco et al. 2015).  

8. Transparency Visualizations for HAT 

8.1 Autonomous Research Pilot Initiative (ARPI) SAT 
Visualization Research  

Whereas we discussed SAT efficacy in various paradigms both in terms of 
increasing trust and in improving overall performance, the presentation of SAT-
based information benefits from effective visualization techniques underlying the 
various implantations of SAT (Cha et al. 2019). HRED researchers supported two 
DOD joint programs to show the importance of the SAT framework as integral to 
the development of autonomous systems as part of the Autonomous Research Pilot 
Initiative (ARPI). They developed two visualization suites of displays based on 
SAT for 1) Intelligent Multi-UxV Planner with Adaptive Collaborative/Control 
Technologies (IMPACT) project in conjunction with the AFRL and the Navy 
(Mercado et al. 2016; Draper et al. 2018), and 2) Autonomous Squad Member 
(ASM) in conjunction with Navy researchers (Selkowitz et al. 2016; Wright et al.  
2019). Both programs had multiple iterations and experimental tests to develop 
visualization concepts based on SAT enriched by concepts developed by the other 
services (Calhoun et al. 2018).  
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The HRED team designed transparency displays based on the SAT model and 
human factors requirements developed by the AFRL for the IMPACT planning 
paradigm (Calhoun et al. 2018). Figure 12 illustrates the final version of the 
interface portraying multiple levels of information for planning a complex littoral 
instillation defense mission showing autonomous assets chosen, optimal routes, 
projected outcomes, and uncertainties using both graphics and text annotations. 
Figure 11 compares SAT visualizations of two plans enabling the operator to 
choose between different solutions proposed by the planning agent. Each plan 
illustrates tradeoffs among time, coverage, fuel endurance, and general capability 
computed by the agent. The importance of each parameter is shown as the relative 
height on the individual bar graphs allowing easy comparisons between plan A and 
B. For example, for timeliness plan A is rated higher than plan B but for sensor 
coverage plan B is rated higher than plan A. The operator is able to choose the 
better plan based not only on the agent’s suggestions but also on how the operator 
perceived the proposed COAs in relation to the commander’s intent and updated 
mission information. Because the agent was not always perfectly accurate (e.g., due 
to constraints out of its control), incrementally increasing SAT information 
improved the operator’s correct automation usage (Stowers et al. 2016). In 
summary, transparency visualizations enabled the operator to use his/her own 
knowledge of the ongoing mission as well as the SAT displays for effective trust 
calibration during military human–agent teaming missions (Mercado et al. 2016).   

The ASM displays were developed as SAT at-a-glance information from an 
autonomous robot that supported an infantry squad engaged in a combat patrol 
(Fig. 13). The combat environment required rapid decision-making in seconds 
rather than minutes favoring graphical designs that were immediate rather than 
detailed (Selkowitz et al. 2016). Graphics indicting the robot’s future trajectory 
(L1+L2+L3) improved the participants’ SA whereas adding uncertainty cues 
(L1+L2+L3+U) did not significantly improve SA (Selkowitz et al. 2016). 
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Fig. 12 Improved transparency visualization for IMPACT experiments: direct comparison 
of plan options A and B (adapted from Stowers et al. 2016), in a more concise format, with 
uncertainty information in the text box. Updated mission information in the text box on the 
lower left-hand side.  

 

Fig. 13 Display for the ASM with annotations (Selkowitz et al. 2016) 

8.2 Vehicular Displays 

The military’s fleets of UVs are becoming increasingly autonomous: eventually 
they will transition into robotic vehicles that are supervised rather than controlled. 
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The SA of the remote operator is maintained not only by feedback from smart 
agents but also by displays from the on-board sensors. The HRI program funded 
Israeli researchers from Ben Gurion University of the Negev who were evaluating 
displays for both Unmanned Aerial Systems (UAS) and ground vehicles (UGV) 
used for counter insurgency missions. Their initial studies in collaboration with  
HRED researchers at Fort Benning, Georgia, found Soldiers with 4-inch (diagonal)  
hand-held or 12-inch tablet displays could interpret intelligence information from 
remote sensors equally well but the helmet-mounted display conditions resulted in 
poorer performance, possibly because of  binocular rivalry and eye-strain (Oron-
Gilad 2014).  

Later studies investigated remote operators supported by displays with multiple 
images so the operators were able to compare UAS and UGV views (Ophir-Arbelle 
et al. 2013). The imagery displays were able to combine scenes of the ongoing 
mission by integrating maps of areas of interest, UGV and UAS images. The 
interfaces improved performance over single imagery displays because remote 
operators were able visualize both the frontal (in the UGV) and planar (UAS) views 
of the ongoing mission within the context of the map display (Fig. 14). 

 

Fig. 14 Combined imagery views of UVs and map of area of interest (adapted from Ophir- 
Arbelle et al. 2013)  

HRED researchers investigated display augmentations for Autonomous Navigation 
Systems (ANS) implemented in a robotic version of the Stryker combat vehicle. 
The augmentations (Fig. 15) displayed information extracted from the on-board 
ANS sensors to predict near-term and longer projected vehicle paths and obstacles 
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(Evans 2012). Evans investigated the aids in a field exercise at Camp Lejeune, 
North Carolina, showing that operator with the augmented visualizations relied on 
the ANS more so than in conditions where the augmented displays were not 
available. His study demonstrated that military operators are more likely to rely on 
(trust) autonomous options if they are shown projected outcomes. 

 

Fig. 15 Example of the Warfighter machine interface showing both the short-term (green) 
and long-term (blue) operator aids (Evans 2012) 

8.3 Summary for Visualization 

The lessons learned from these studies have shed light on operator performance and 
display design principles for complex military environments. When the amount of 
information to be processed seems overwhelming, humans will look to what they 
perceive as the “easiest” source of information, regardless of its appropriateness for 
the task at hand. As Wright et al. (2017) demonstrated, graphics are not always 
necessary, sometimes plain text will suffice. However, when comparisons are 
required and the amount of information to be processed is large, graphical 
visualization techniques have been shown to successfully convey information to 
the operator without increasing their cognitive workload (Wright et al. 2015; 
Mercado et al. 2016; Selkowitz et al. 2016). Displays that show both aerial and 
ground views of UV sensors within their geographical context will enhance the 
Soldier’s overall SA of the battle space. Driver’s trust of ANS increases if displays 
show both the near-term and longer-term projections of the vehicle’s path. 
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In a more general review of visualization, Cha et al. (2019) conclude that 
“Successful techniques depend on re-creating the external reality of the 
environment in ways amenable to the human’s mental representation of the 
processes involved.” Specific paradigms have different requirements; 
visualizations contribute to understanding and trust when they intuitively capture 
the constraints and affordances in particular environments. 

9. Conclusions 

Combat will entail radically different technology from that which defined past 
military missions. Robotic aerial and ground vehicles, AI systems, augmented 
reality, autonomy, and Soldiers teaming with advanced algorithms will be utilized 
both by us and by our adversaries. An important principle underlying our research 
is that as robots and agents become more autonomous, Soldiers’ taskings do not 
become easier—rather they change, often becoming more demanding. HRED’s 
HRI program investigated the role of Soldiers in controlling/supervising/interacting 
with robots and agents during mounted and dismounted missions, most often in 
multitasking environments. Early research focused on teleoperations and the 
disadvantages of remote viewing and robot manipulation but we also reported 
mitigating technologies such as stereoscopic viewing, haptic manipulations, and 
multimodal solutions.  

Multimodal interfaces were investigated to ameliorate the increased complexity of 
dismounted and mounted Soldiers controlling and eventually supervising robotic 
systems. The utility of multi-modal displays and controls is based on well- 
established cognitive research that has shown performance and SA gains by 
distributing cognitive resources over multiple modalities (visual, auditory, tactile, 
gesture). Based on our research findings, we discuss the performance advantages 
and limitations of each modality stressing the advantages of multimodal synergy in 
high workload or noisy environments.  

Design of multimodal interfaces depends on the tasking environment and whether 
the Soldier is mounted or dismounted. Certain applications subsume both Soldier 
missions (e.g., tactile cueing for direction [left] and voice for distance [200 m]) 
whereas others are more mission specific. Gestures will be particularly useful for 
augmented reality applications because it is a natural way to transverse 3-D space 
and gestures are efficacious for small robot control as well. We also discussed the 
advantages of visual displays that showed different views of the battlespace and the 
usefulness of predictor displays for autonomous navigation. 

As part of the RoboLeader program, we investigated agent supervision of multiple 
robots and manned vehicles while varying number of vehicles, type of agent errors, 
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amount of automation, task type, operator differences, and cognitive biases. We 
concluded that using an IA acting as an intermediate supervisor reduced workload 
and improved performance even for agents with less than perfect reliability. We 
discussed the importance of calibrated trust and transparency for human–agent 
collaboration. The SAT model was developed to enable operators to understand the 
agent’s current actions and intended plans, the logic behind the current actions and 
plans, and the projected outcomes and uncertainties. We developed SAT 
visualization concepts and principles for two DOD autonomy research programs 
(IMPACT and ASM) showing their efficacy for improving operator performance 
and for calibrating trust under diverse combat scenarios.  

For human–agent teaming paradigms, we conclude that SAT information needs to 
be two directional—not only the operator’s SA of the agent’s intentions but also 
the agent’s SA of human intentions. This is predicated on human-agent 
communication but it also implies an SMM to enable implicit interactions as well 
as mutual trust. Our future research objectives encompass more natural and more 
human-like interactions with agents (and embedded agents such as robots) through 
improved NLP strategies, software emulation of SMM, transparent ML, calibrated 
trust, and naturalistic multi-modal interfaces. 
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